Large Time Behavior of Solutions to SemiLinear Equations with Quadratic Growth in the Gradient
نویسندگان
چکیده
This paper studies the large time behavior of solutions to semi-linear Cauchy problems with quadratic nonlinearity in gradients. The Cauchy problem considered has a general state space and may degenerate on the boundary of the state space. Two types of large time behavior are obtained: i) pointwise convergence of the solution and its gradient; ii) convergence of solutions to associated backward stochastic differential equations. When the state space is R or the space of positive definite matrices, both types of convergence are obtained under growth conditions on coefficients. These large time convergence results have direct applications in risk sensitive control and long term portfolio choice problems.
منابع مشابه
Comparison results and improved quantified inequalities for semilinear elliptic equations
In this paper, we prove some pointwise comparison results between the solutions of some secondorder semilinear elliptic equations in a domain Ω of Rn and the solutions of some radially symmetric equations in the equimeasurable ball Ω∗. The coefficients of the symmetrized equations in Ω∗ satisfy similar constraints as the original ones in Ω. We consider both the case of equations with linear gro...
متن کامل$L^p$-existence of mild solutions of fractional differential equations in Banach space
We study the existence of mild solutions for semilinear fractional differential equations with nonlocal initial conditions in $L^p([0,1],E)$, where $E$ is a separable Banach space. The main ingredients used in the proof of our results are measure of noncompactness, Darbo and Schauder fixed point theorems. Finally, an application is proved to illustrate the results of this work.
متن کاملThe Solution of Fully Fuzzy Quadratic Equations Based on Restricted Variation
Firstly, in this paper, we apply the Fuzzy Restricted Variation Method to achieve an analytical and approximate unsymmetrical fuzzy solution for Fully Fuzzy Quadratic Equation. In this application, after finding the real root of 1-cut of $tilde{A}tilde{X}^{2}+tilde{B}tilde{X}+tilde{C}=tilde{D}$, initial guess is always chosen with possible unknown parameters that leads to highly accurate soluti...
متن کاملClassification of Connecting Solutions of Semilinear Parabolic Equations
Abstract. For a given semilinear parabolic equation with polynomial nonlinearity, many solutions blow up in finite time. For a certain large class of these equations, we show that some of the solutions which do not blow up actually tend to equilibria. The characterizing property of such solutions is a finite energy constraint, which comes about from the fact that this class of equations can be ...
متن کاملLarge Deflection Analysis of Compliant Beams of Variable Thickness and Non-Homogenous Material under Combined Load and Multiple Boundary Conditions
This paper studies a new approach to analyze the large deflection behavior of prismatic and non-prismatic beams of non-homogenous material under combined load and multiple boundary conditions. The mathematical formulation has been derived which led to a set of six first-order ordinary differential equations. The geometric nonlinearity was solved numerically using the multiple shooting method co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Control and Optimization
دوره 53 شماره
صفحات -
تاریخ انتشار 2015